# A REPORT ON MAGNETIC SURVEYS OF ULTRAMAFIC BODIES IN THE DOVER, WINDHAM, AND LUDLOW AREAS, VERMONT

By

VINCENT J. MURPHY
WESTON GEOPHYSICAL ENGINEERS, INC.

for the
VERMONT GEOLOGICAL SURVEY
CHARLES G. DOLL, State Geologist



WATER RESOURCES DEPARTMENT MONTPELIER, VERMONT

# TABLE OF CONTENTS

|                                                 | PAGE |
|-------------------------------------------------|------|
| Preface                                         | 5    |
| The Dover, Windham, and Mt. Snow (Pisgah) Areas | 7    |
| Introduction                                    |      |
| Method of Study                                 | 7    |
| Locations of Magnetic Stations                  | 7    |
| Results of Survey                               | 8    |
| Presentation of Data                            | 8    |
| Correlation with Known Geology                  | 8    |
| North and South Windham Areas                   | 8    |
| East Dover (South) Area                         | 8    |
| East Dover (North) Area                         | 8    |
| Mt. Snow (Pisgah) Area                          | 9    |
| Economic Possibilities                          | 9    |
| Recommendations                                 | 9    |
| The Ludlow Area                                 | 45   |
| Introduction.                                   | 45   |
| Method of Study.                                |      |
| Locations of Magnetic Stations.                 | 45   |
| Results of Survey                               | 45   |
| Presentation of Data                            | 46   |
| Correlations with Known Goology                 | 46   |
| Correlations with Known Geology                 | 40   |
| Economic rossibilities and Recommendations      | 46   |
|                                                 |      |
|                                                 |      |
| Magnetic Traverse Tabulations                   |      |
|                                                 | PAGE |
| North Windham Area                              | 15   |
| South Windham Area                              |      |
| East Dover (South) Area                         | 27   |
| East Dover (North) Area                         | 33   |
| Mt. Snow (Pisgah) Area                          | 43   |
| Ludlow Area                                     | 52   |

# List of Illustrations

| ·                                   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | P | AGE |
|-------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|
| The Windham Areas                   |   | • |   |   |   |   |   |   |   |   |   |   |   |   |   | 11  |
| Index Map                           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 11  |
| North Windham Area                  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 11  |
| Geologic and Magnetic Traverse Map. |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 12  |
| Magnetic Contour Map                |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 13  |
| Magnetic Profile Sections           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 14  |
| South Windham Area                  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 11  |
| Geologic and Magnetic Traverse Map. |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 17  |
| Magnetic Contour Map                |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 18  |
| Magnetic Profile Sections           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 19  |
| The Dover Areas                     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 23  |
| Index Map                           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 23  |
| East Dover (South) Area             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 23  |
| Geologic and Magnetic Traverse Map. |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 24  |
| Magnetic Contour Map                |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 25  |
| Magnetic Profile Sections           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 26  |
| East Dover (North) Area             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 23  |
| Geologic and Magnetic Traverse Map. |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 28  |
| Magnetic Contour Map                |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 29  |
| Magnetic Profile Sections           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 30  |
| Mt. Snow (Pisgah) Area              |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 39  |
| Index Map                           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 39  |
| Geologic and Magnetic Traverse Map. |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 40  |
| Magnetic Contour Map                |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 41  |
| Magnetic Profile Sections           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 42  |
| The Ludlow Area                     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 47  |
| Index Map                           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Geologic and Magnetic Traverse Map  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Magnetic Contour Map                |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Magnetic Profile Sections           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| magnetic i forme decidons           | • | • | • | ٠ | • | • | ٠ | • | • | • | • | • | • | ٠ | • | .00 |

#### **PREFACE**

This initial report of the new economic geology series of the Geological Survey was made possible largely by the results of the systematic basic mapping program which produced the Centennial Geologic Map of Vermont. Reports in this series are concerned with areas having possible economic potential, including those cited in the older geological literature and meriting evaluation. In the light of modern technological skills and advances in the methods of geological exploration, and the new geological knowledge of the state, it is now time for a revival of interest in the appraisal of promising localities. Investigations are based upon the known geology and comprise the application of geophysical and geochemical methods suitable to the geologic conditions of a locality.

The Geological Survey has plans to continue and place greater emphasis on such a program and to publish the results. It is hoped that these reports will interest industry sufficiently to induce it to continue additional explorations which might lead to its establishment in the state. Mining companies are interested in areas in the state demonstrating economic possibilities. What is needed is the necessary geologic information which this program is designed to provide.

Charles G. Doll State Geologist

# REPORT ON MAGNETIC SURVEYS IN THE DOVER AND WINDHAM AREAS, WINDHAM COUNTY, VERMONT

Ву

# VINCENT J. MURPHY WESTON GEOPHYSICAL ENGINEERS, INC.

#### Introduction

During the recently completed geologic mapping program of the Vermont Geological Survey, limited geophysical field studies disclosed magnetic anomalies warranting further study.

An agreement was entered into between the Geological Survey and Weston Geophysical Engineers, Inc., to conduct magnetic surveys in specified areas near Dover, Vermont, in the hope that such anomalies might be related to mineral deposits of economic value.

Dr. Charles G. Doll, Vermont State Geologist, and Mr. Vincent J. Murphy of Weston Geophysical Engineers, Inc., made several field inspections to establish an economical and effective reconnaissance exploration program. It was decided that a specified number of magnetic traverses should be conducted over several geologic horizons where either abandoned iron mines or ultramafic rock masses are located. Other adjacent areas were also to be investigated in the event that similar geologic features existed which could not have been observed during the geological field mapping program. The known occurrences of magnetic minerals in the mine areas, and the anticipated occurrences along mineralized zones in the ultramafic areas, indicated that a magnetic survey was feasible.

#### Method of Study

The magnetic method of geophysical exploration establishes relative values of the earth's magnetic field

throughout the area of interest. Similar readings resulting in a flat curve of the plotted results are obtained when no concentrations of magnetic minerals are present. Highly anomalous readings are obtained wherever a concentration of magnetic minerals exists. If the magnetic anomalies extend over a wide area, or if they can be traced for great longitudinal distances, a body of possible economic value is indicated.

The magnetic minerals are often of too small a quantity to have economic value, but they are in many instances associated with other minerals that are of value. The magnetic minerals therefore serve as indicators, and are readily detectable.

For this study, a magnetic level of approximately 1000 gammas indicates a smooth magnetic field condition free of anomalies. Wherever the values are in the range of 2000–4000 gammas, an anomalous condition exists. The width of an anomaly, in this study, indicates the approximate width of the buried concentration of magnetic minerals. The magnitude of the anomalies and the sudden transition from level values to highly anomalous values indicates geologic features that are very close to the ground surface.

#### Locations of Magnetic Stations

Magnetic stations were established along roads, trails and other features that facilitated locating them on U.S.G.S. topographic contour maps. Approximately 950 stations were occupied and generally spaced 200 feet apart. In some instances, very close spacings were used to determine if anomalous data should be rejected; in other cases, distant spacings were necessary to avoid buildings, fences, etc. In the North Windham and South Windham areas closed magnetic traverses were operated to determine the continuity of the mapped ultramafic and to detect others that might exist at shallow depths.

#### Results of the Survey

Sections of the U.S.G.S. topographic maps of the areas under study were enlarged and the traverses indicated thereon. The locations of two or more stations for each traverse are also indicated on the maps. The remaining stations for each traverse can be located readily by use of the plan map data and the spacings of points shown on the magnetic profile for each traverse.

Magnetic station values for each traverse are plotted on the graph sections accompanying the report. Tabulations of these values are also included in the report in the event that a specific need for them arises.

#### Presentation of Data

Magnetic survey data can be displayed in a similar manner as topographic survey data; that is, by means of profiling and/or contouring. Although profiling is the preferred method for showing the existence and relative magnitude of the anomalies disclosed by this study, contour maps are helpful in showing the trend and extent of the anomalies.

Magnetic profiles and contour maps are therefore included for each of the several areas that were investigated. Wherever a large number of stations were occupied and cross-profiles or adjacent profiles exist, the data can be considered as very reliable and approaching the coverage of a highly detailed survey. They should be used with discretion, however, in areas where the profiles and contour maps are based on only a few or isolated stations.

#### Correlation with Known Geology

The type and amount of correlation of magnetic survey data with known geology depends primarily on the geographical extent and density of stationing. For studies where the magnetic traverses extend for hundreds of miles, definite inferences can be drawn regarding the depth of surface formations and the existence of deeply buried ones. In studies such as this survey, where the areas are limited in extent, the objectives are usually concerned with prospecting for economic minerals. The correlation with geology therefore exists in the explanation and evaluation of magnetic anomalies from an economic standpoint, and the correlation may be direct or indirect. It is direct if, for example, a magnetic ore body is known to exist and it is to be only de-

tected and traced; it is indirect if the anomaly cannot be explained with certainty by surface geology but does have a logical explanation indicating further exploration by drilling. The anomalies disclosed by this study have, for the most part, indirect geological correlations.

Specific correlations of data are included in the following sections of this report which are concerned with individual areas and the anomalous magnetic conditions disclosed in each area.

For a detailed description of the geology of the Dover and Mt. Snow (Pisgah) areas see "The Green Mountain Anticlinorium in the Vicinity of Wilmington and Woodford, Vermont" by James W. Skehan, S.J., Bulletin No. 17, Vermont Geological Survey, 1961. The geology of the Windham areas is described in "Geology of the Southern Part of the Chester Dome, Vermont" by John Lang Rosenfeld: Ph.D. thesis, Harvard University, 1954

#### North Windham and South Windham Areas

These two areas contain a few small exposures of ultramafic rocks. The anomalies on the North Windham traverse probably result from small, discontinuous ultramafic rock masses or localized unrelated concentrations of magnetic minerals.

The South Windham traverse is free of anomalies with one exception, the anomaly from station N-1 to N-13. This smooth magnetic feature indicates a possible ultramafic body at a depth of approximately 200 to 400 feet below ground surface.

The magnetic data throughout these two areas indicate that the Moretown formation is generally non-magnetic. Anomalies that have been detected within this formation are presumed due to magnetic mineral concentrations associated with very localized ultramafics. These exist close to ground surface except for the single instance noted in the preceding paragraph.

#### East Dover (South) Area

The data for this area again indicate a pattern of small, low-level anomalies for the Moretown formation as a whole. High-level anomalies exist at or in the vicinity of small, previously mapped ultramafics. Based on the extremely localized nature of these anomalies, we conclude that large buried ultramafic rock masses do not exist here and the map pattern of smaller zones is discontinuous.

#### East Dover (North) Area

The profile and contour data indicate conclusively that this area contains extensive zones with high concentrations of magnetic minerals. These exist near the contact areas of a large ultramafic rock mass which is shown on the map of the Wilmington-Woodford area

(Bull. 17, Vermont Geological Survey) and noted as the largest single exposure in the state.

A considerable amount of magnetic data over the ultramafic shows a low magnetic level similar to the adjacent rocks of the Moretown formation. It therefore appears that zones of magnetic minerals indicated by high-level anomalies are probably related to contact or structural phenomena and are not indicative of the ultramafic rock mass as a single formation.

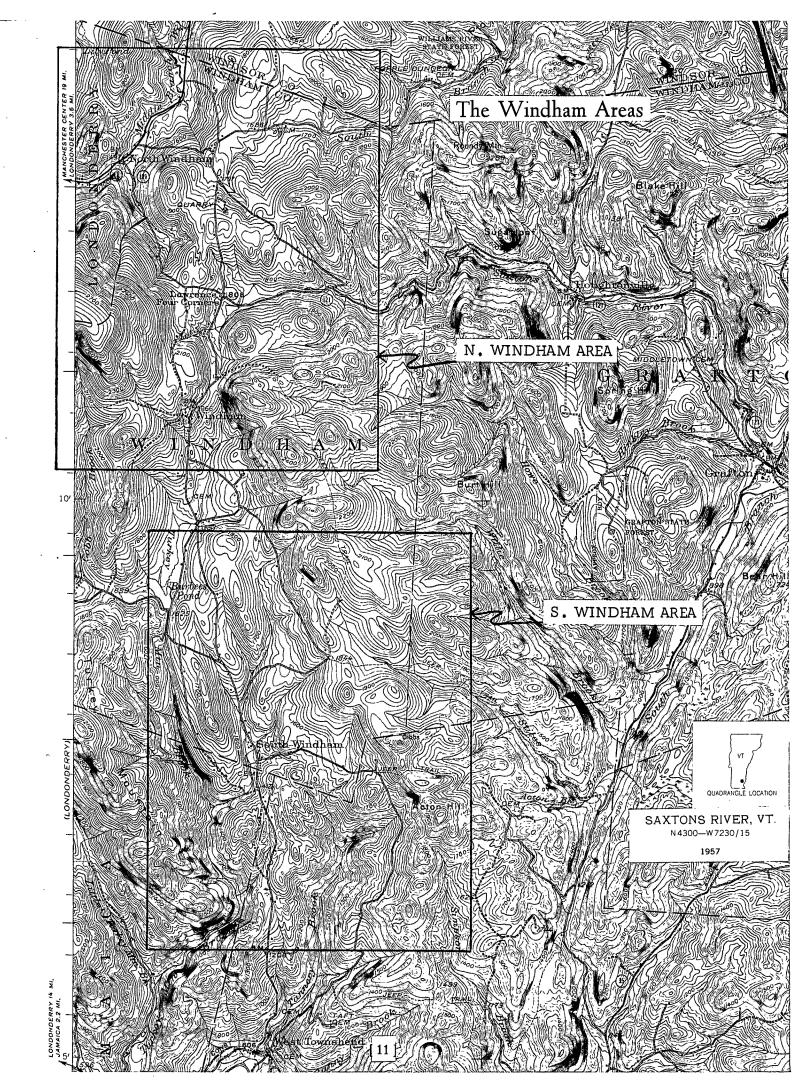
The profile of magnetic traverse "J" is one worthy of special note. In the vicinity of stations J-15 and J-39 strong anomalous trends are indicated. These two positions are very close to the mapped contact areas and may help to more accurately establish the contact in the field. Profiles for the other traverses indicate similar anomalous conditions and positions of definite mineralization.

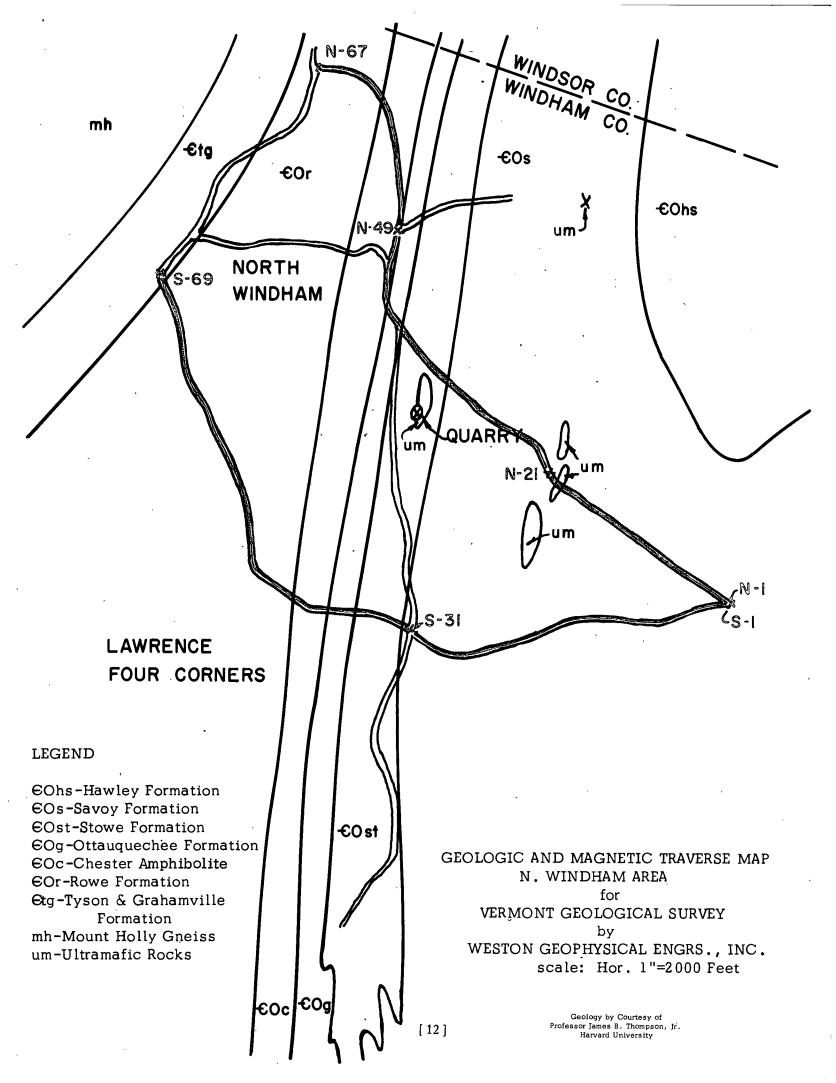
#### Mt. Snow (Mt. Pisgah) Area

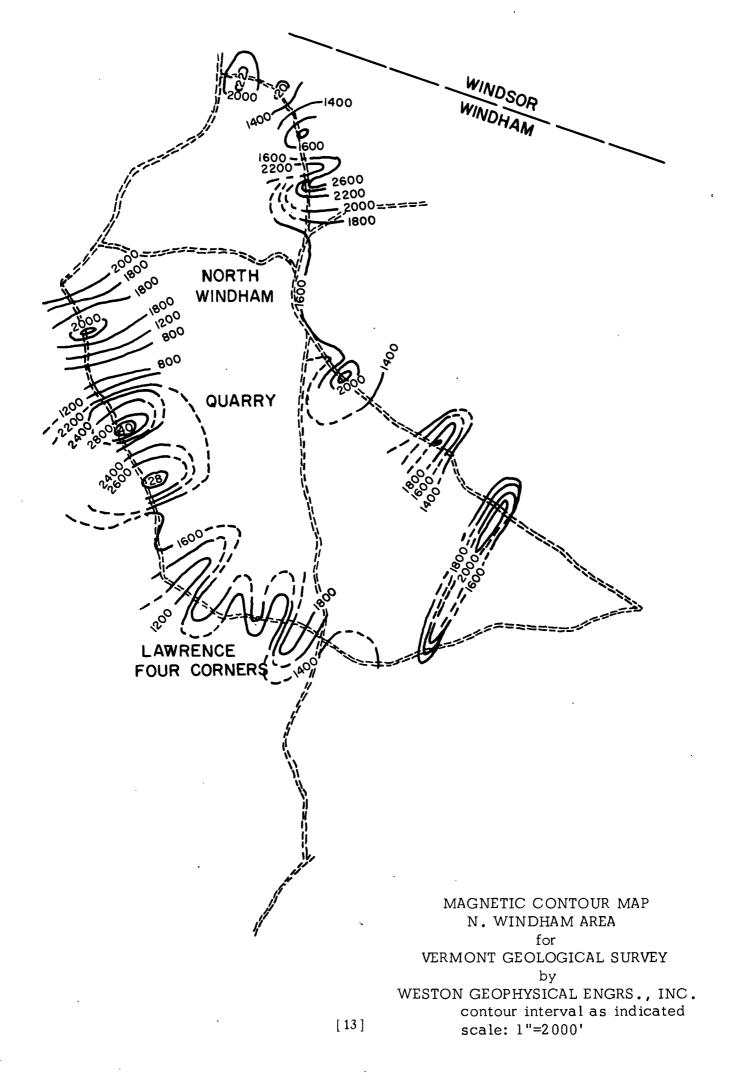
The abandoned iron mines on the east side of Mt. Snow, noted on the geologic map of the Wilmington-Woodford area, are indicative of possible iron deposits in adjacent locales. The mines exist at or close to the contact of the Wilmington gneiss and the Heartwell-ville schist with a small zone of the Hoosac formation.

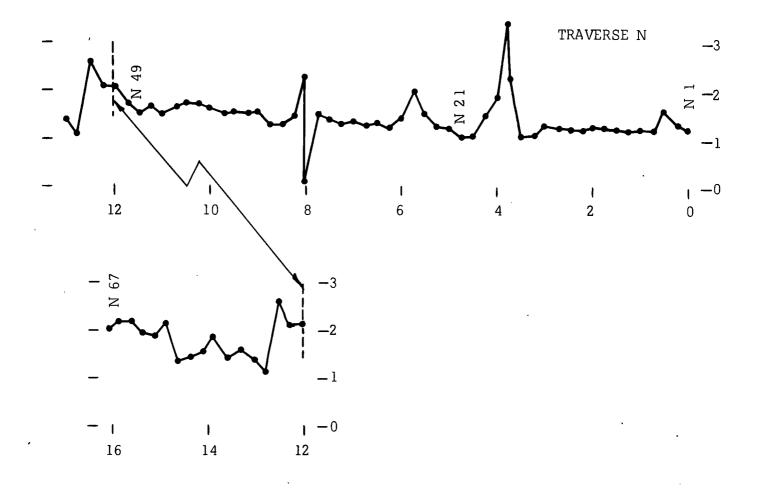
The magnetic data for this area indicate a few small anomalies, and high-level readings were obtained only in the working areas of the mines. Since the data do not display the anomalous character to be expected for large and extensive iron deposits, we have concluded that the deposits are very limited in extent and concentration.

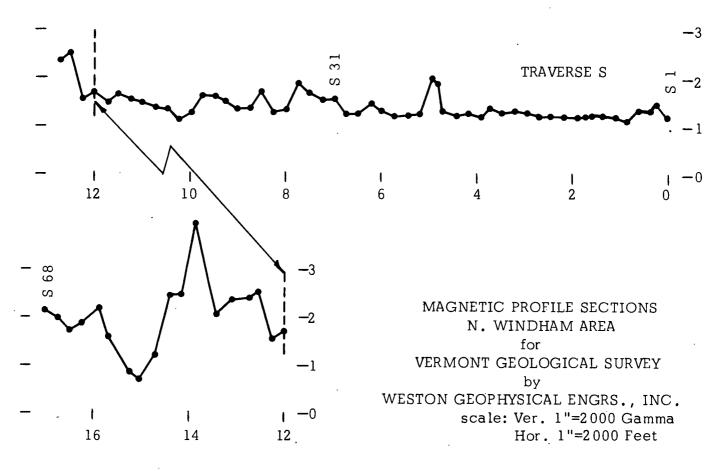
The lack of anomalies likewise does not permit the definition of contact positions in the field for the above noted formations.


#### Economic Possibilities


The only area which appears to have significant economic possibility is the East Dover (North) area. The anomalous magnetic readings in this area indicate high concentrations of magnetic minerals. The magnetic minerals in many instances are indicators of other mineral deposits suitable for exploitation.


#### Recommendations


Test borings in the vicinity of the magnetic anomalies in East Dover are advisable to determine if mineralization of economic significance is associated with the magnetic anomalies. The suggested positions for drilling are the vicinity of stations J-15 and J-39, and along the anomalous trends north and south of these stations.


In other locations additional and more detailed magnetic studies may prove helpful prior to drilling, to more accurately delineate anomalous trends. It is apparent, however, from the results of the present survey that no further magnetic studies will be necessary on the part of the Survey to disclose the existence and general location of anomalies.



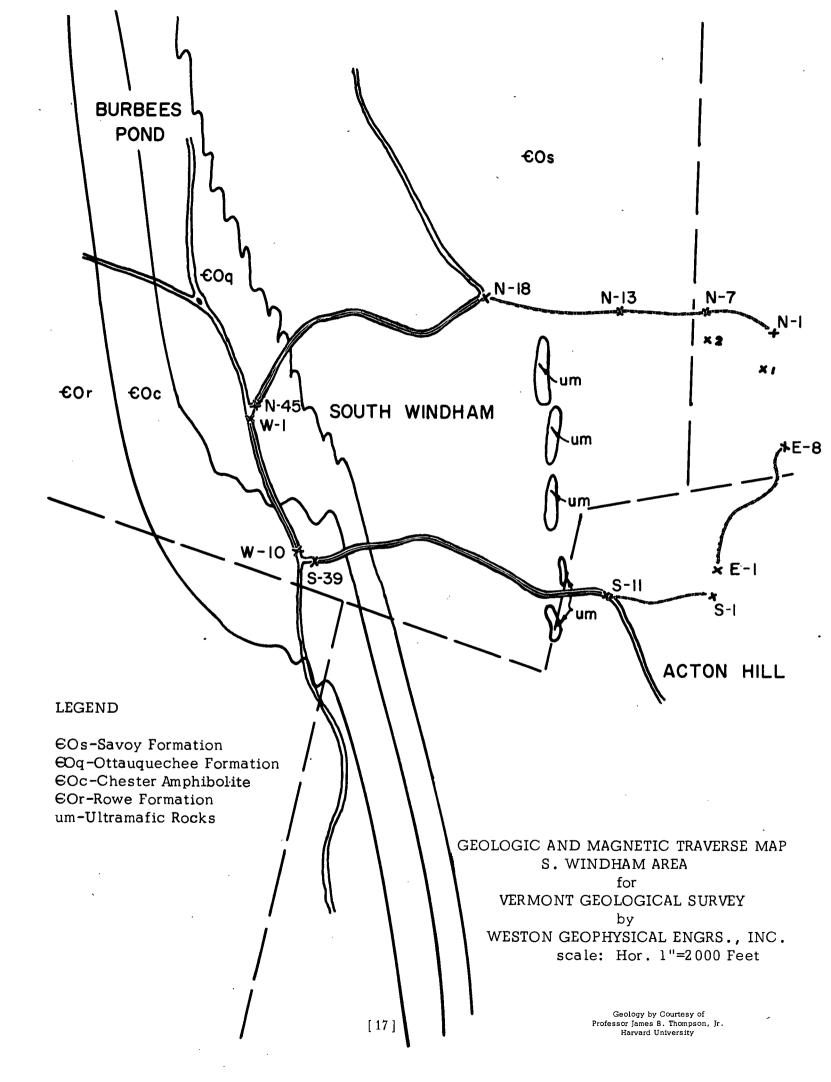


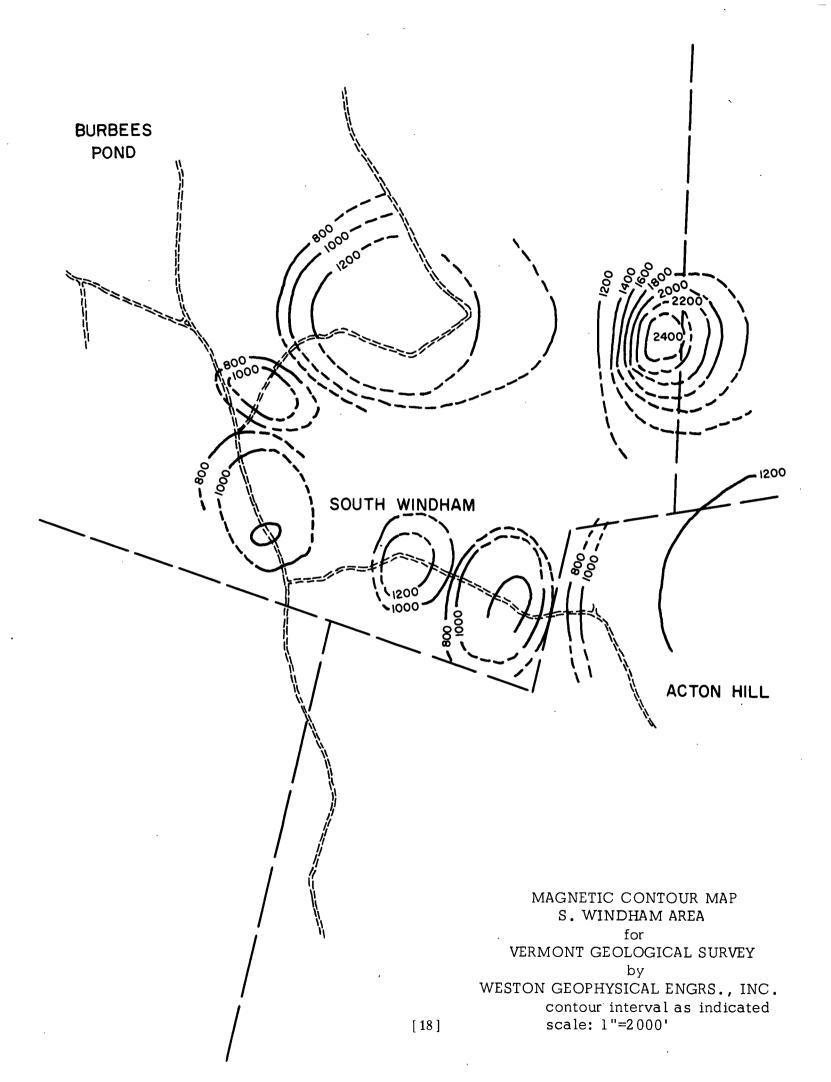


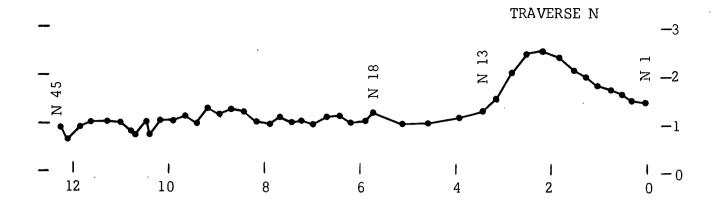


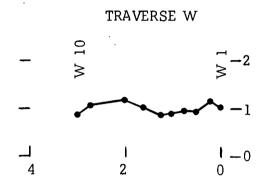


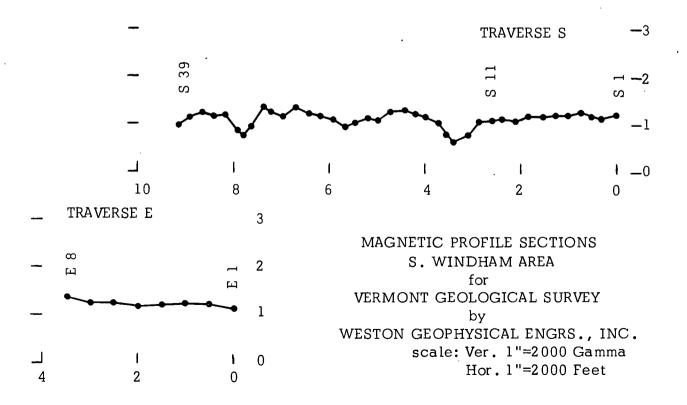
# N. WINDHAM AREA


#### NORTH TRAVERSE


| STATION | GAMMAS | STATION | GAMMAS |
|---------|--------|---------|--------|
| N-1     | 1230   | 36      | 1450   |
| 2       | 1350   | 37      | 1300   |
| 3       | 1650   | 38      | 1310   |
| 4       | 12 10  | 39      | 1570   |
| 5       | 1225   | 40      | 1535   |
| . 6     | 1210   | 41      | 1550   |
| 7       | 1245   | 42      | 1540   |
| 8       | 1265   | 43      | 1610   |
| 9       | 1275   | 44      | 1755   |
| 10      | 1230   | 45      | 1730   |
| 11      | 1280   | 46      | 1650   |
| 12      | 1290   | 47      | 1540   |
| 13      | 1300   | 48      | 1650   |
| 14      | 1090   | N-49    | 1510   |
| 15      | 1055   | 50      | 1740   |
| 16      | 2310   | 51      | 2100   |
| 17      | 3440   | · 52    | 2100   |
| 18      | 1845   | 53      | 2660   |
| 19      | 1410   | 54      | 1070   |
| 20      | 1080   | 55      | 1410   |
| 21      | 1080   | 56      | 1590   |
| 22      | 1260   | 57      | 1410   |
| 23      | 1305   | 58      | 1860   |
| 24      | 1590   | 59      | 1580   |
| 25      | 2070   | 60      | 1490   |
| 26      | 1440   | 61      | 1360   |
| 27      | 1220   | 62      | 2160   |
| 28      | 1330   | 63      | 1900   |
| 29      | 1310   | 64      | 1940   |
| 30      | 1345   | 65      | 2180   |
| 31      | 1320   | 66      | 2180   |
| 32      | 1390   | N-67    | 2 02 0 |
| 33      | 1525   |         |        |
| 34      | 100    |         |        |
| 35      | 2340   |         |        |


#### N. WINDHAM AREA


#### SOUTH TRAVERSE


| STATION | GAMMAS | STATION | GAMMAS |
|---------|--------|---------|--------|
| S-1     | 1230   | 35      | 1330   |
| 2       | 1450   | 36      | 1300   |
| 3       | 1370   | 37      | 1730   |
| 4       | 1360   | 38      | 1370   |
| 5       | 1170   | 39      | 1380   |
| 6       | 1240   | 40      | 1500   |
| 7       | 1240   | 41      | 1660   |
| 8       | 1270   | 42      | 1625   |
| 9       | 1260   | 43      | 1270   |
| 10      | 1245   | 44      | 1160   |
| 11      | 1240   | 45      | 1320 ′ |
| 12      | 1240   | 46      | 1400   |
| 13      | 1260   | 47      | 1440   |
| 14      | 1300   | 48      | 1560   |
| 15      | 1340   | 49      | 1680   |
| 16      | 1340   | 50      | 1440   |
| 17      | 1420   | 51      | 1700   |
| 18      | 1220   | 52      | 1520   |
| 19      | 1300   | 53      | 2570   |
| 20      | 1270   | 54      | 2370   |
| 2 1     | 1360   | 55      | 2400   |
| 22      | 1900   | 56      | 2030   |
| 23      | 2070   | · 57    | 4000   |
| 24      | 1240   | 58      | 2520   |
| 25      | 1250   | 59      | 2460   |
| 26      | 1200   | 60      | 1200   |
| 27      | 1320   | 61      | 690    |
| 28      | 1430   | 62      | 880    |
| 29      | 1280   | 63      | 1550   |
| 30      | 1270   | 64      | 2210   |
| S-31    | 1540   | 65      | 1860   |
| 32      | 1570   | 66      | 1710   |
| 33      | 1700   | 67      | 2 02 0 |
| 34      | 1940   | S-68    | 2130   |



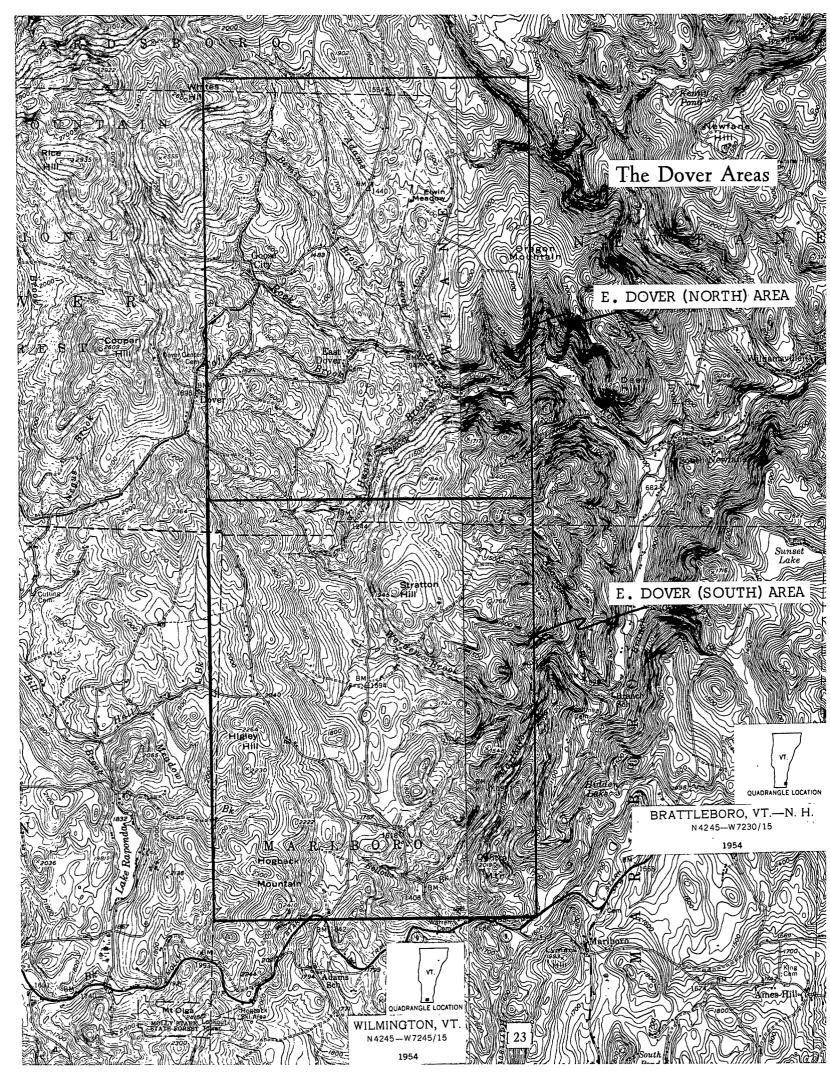


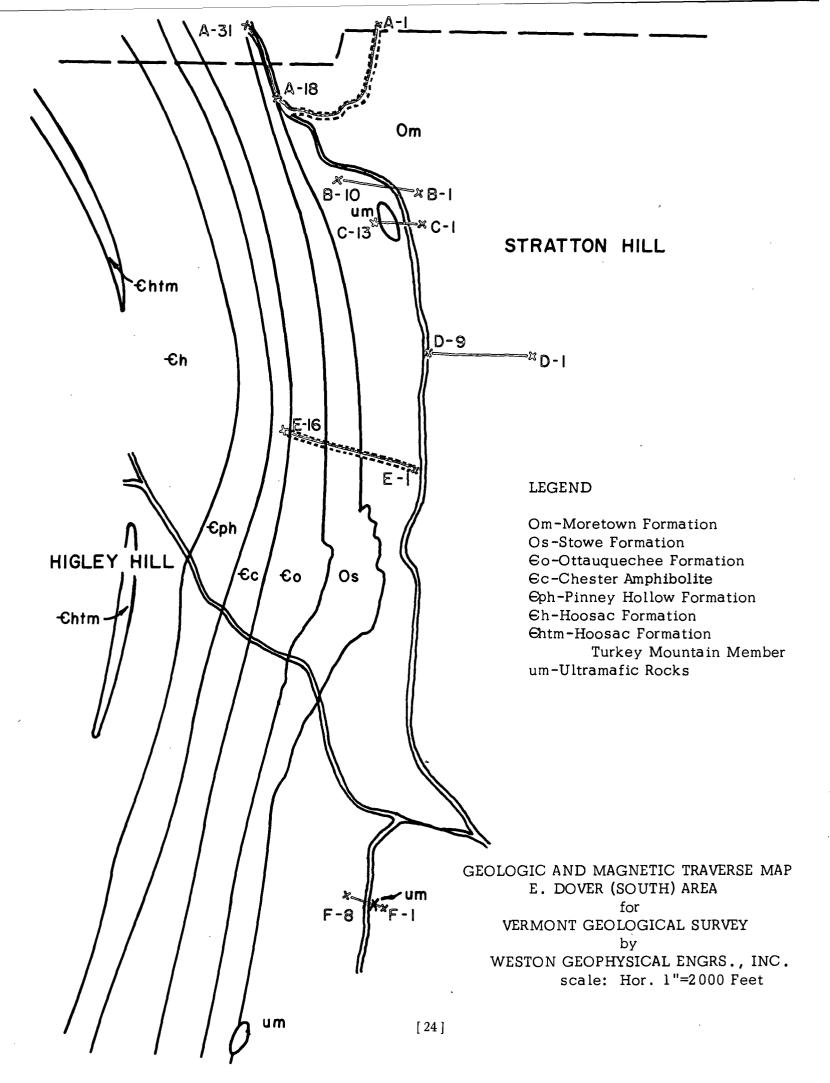


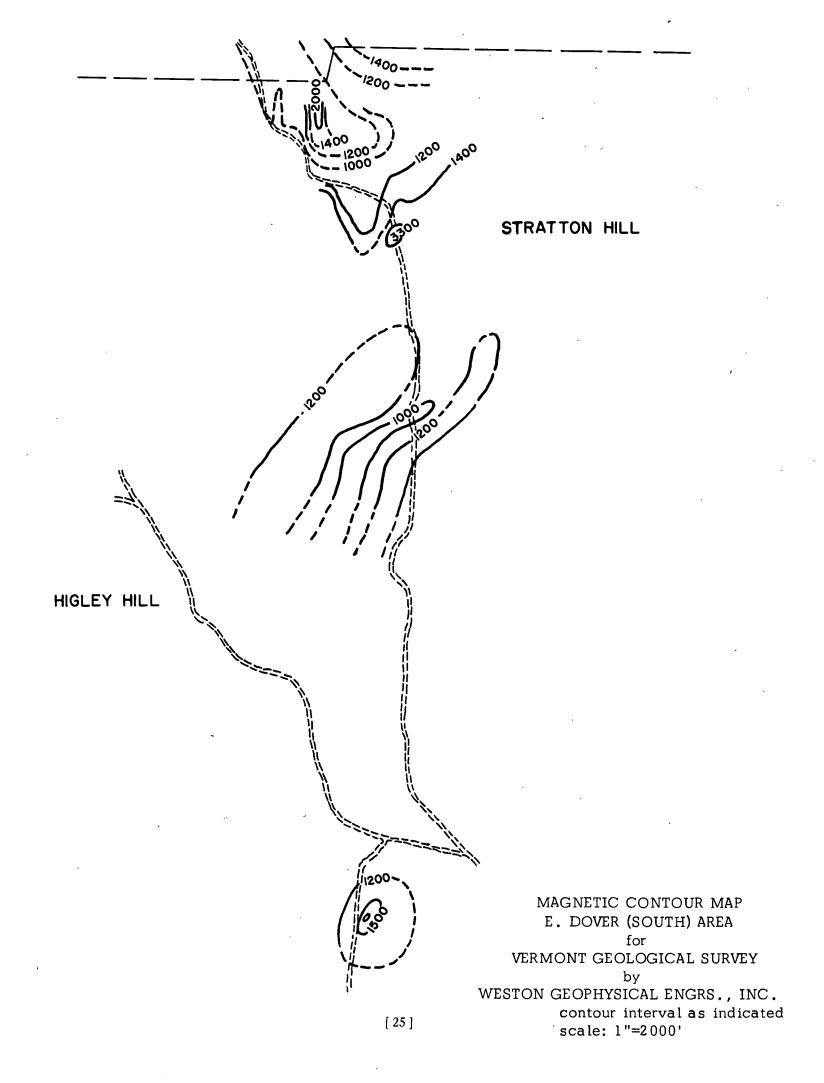


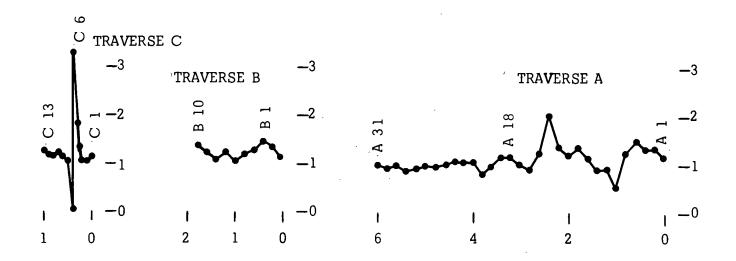


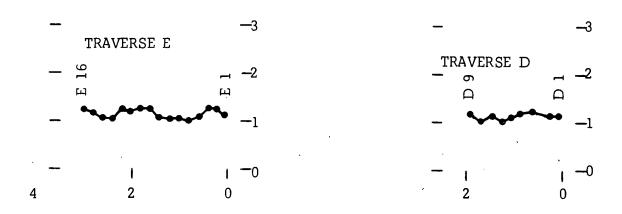
# S. WINDHAM AREA

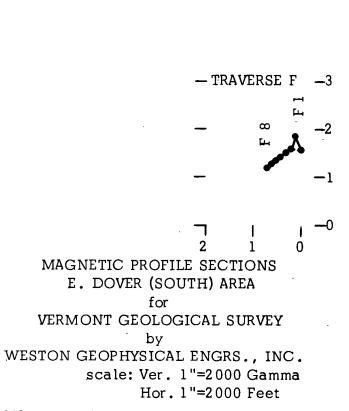

# NORTH & WEST TRAVERSES


| STATION | GAMMAS  | STATION | GAMMAS |
|---------|---------|---------|--------|
| N-10    | 1430    | 29      | 1330   |
| 2       | 1500    | 30      | 1245   |
| 3.      | 1640    | 3 1     | 1350   |
| 4       | 1760    | 32      | 1010   |
| 5       | 1840    | 33      | 1175   |
| 6       | 2 0 5 0 | 34      | 1095   |
| 7       | 2140    | 35      | 1100   |
| 8       | 2410    | 36      | 760    |
| 9       | 2560    | 37      | 1105   |
| 10      | 2500    | 38      | 780    |
| 11      | 2160    | 39      | 870    |
| 12      | 1540    | 40      | 1030   |
| N-13    | 1290    | 41      | 1045   |
| 14      | 1170    | 42      | 1030   |
| 15      | 1025    | 43      | 970    |
| 16      | 1065    | 44      | 600    |
| 17      | 1270    | N-45    | 980    |
| N-18    | 1080    |         |        |
| 19      | 1050    | W- 1    | 1030   |
| 20      | 1200    | 2       | 1130   |
| 21      | 1160    | 3       | 960    |
| 22      | 1010    | 4       | 970    |
| 23      | 1070    | 5       | 930    |
| 24      | 1055    | 6       | 910    |
| 25      | 1140    | 7       | 1080   |
| 26      | 1070    | 8       | 1200   |
| 27      | 1100    | 9       | 1070   |
| 28      | 1280    | W-10    | 890    |


# S. WINDHAM AREA


# SOUTH AND EAST TRAVERSES

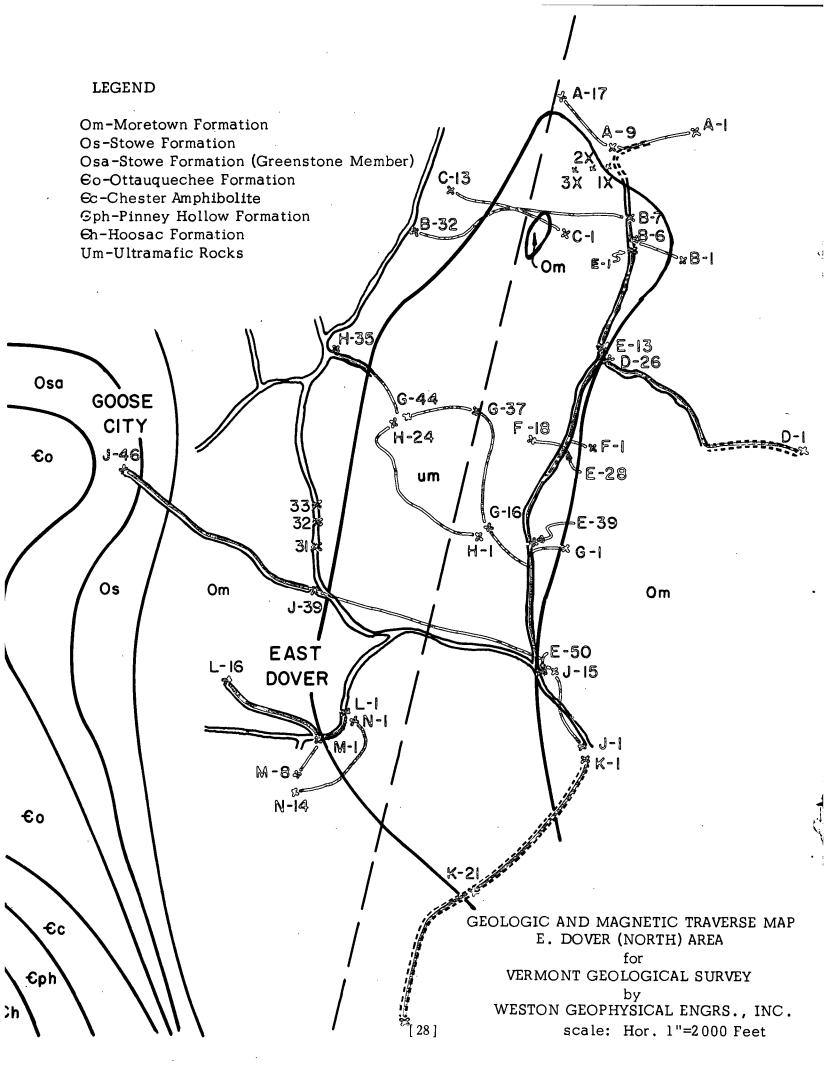

| STATION | GAMMAS | STATION | GAMMAS |
|---------|--------|---------|--------|
| S-1     | 1200   | 26      | 1180   |
| 2       | 1130   | 27 ·    | 1240   |
| 3       | 1170   | 28      | 1320   |
| 4       | 1240   | 29      | 1065   |
| 5       | 1200   | 30      | 1175   |
| 6       | 1190 . | 31      | 1380   |
| 7       | 1160   | 32      | 980    |
| 8       | 1130   | 33      | 760    |
| 9       | 1070   | 34      | 850    |
| 10      | 1110   | 35      | 1200   |
| S-11    | 1100   | 36      | 1190   |
| 12      | 1030   | . 37    | 1240   |
| 13      | 790    | 38      | 1160   |
| 14      | 620    | 39S     | 980    |
| 15      | - 670  |         |        |
| 16      | 1050   | E-1     | 1190   |
| 17      | 1145   | 2       | 1230   |
| 18      | 1250   | 3       | 1250   |
| 19      | 1300   | 4       | 1240   |
| 20      | 1250   | 5       | 1200   |
| 21      | 1070   | 6       | 1240   |
| 22      | 1140   | 7 .     | 1260   |
| 23      | 1090   | E-8     | 1375   |
| 24      | 930    |         |        |
| 25      | 1090   | X 1     | 1330   |
|         |        | X 2     | 2010   |

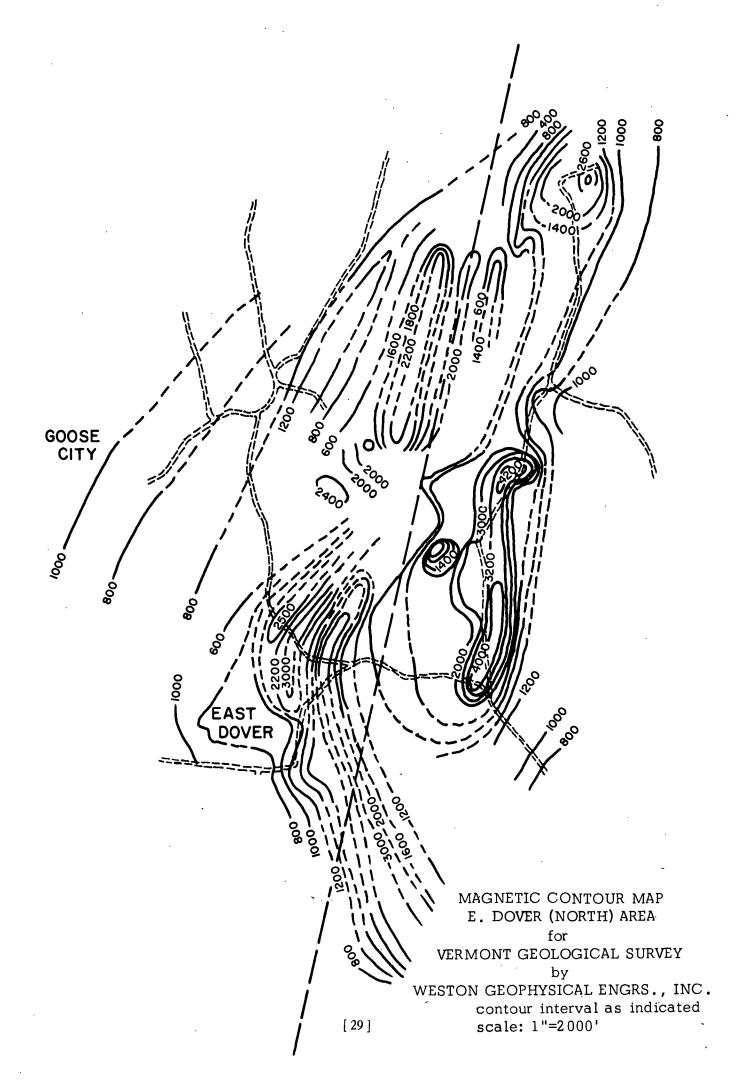


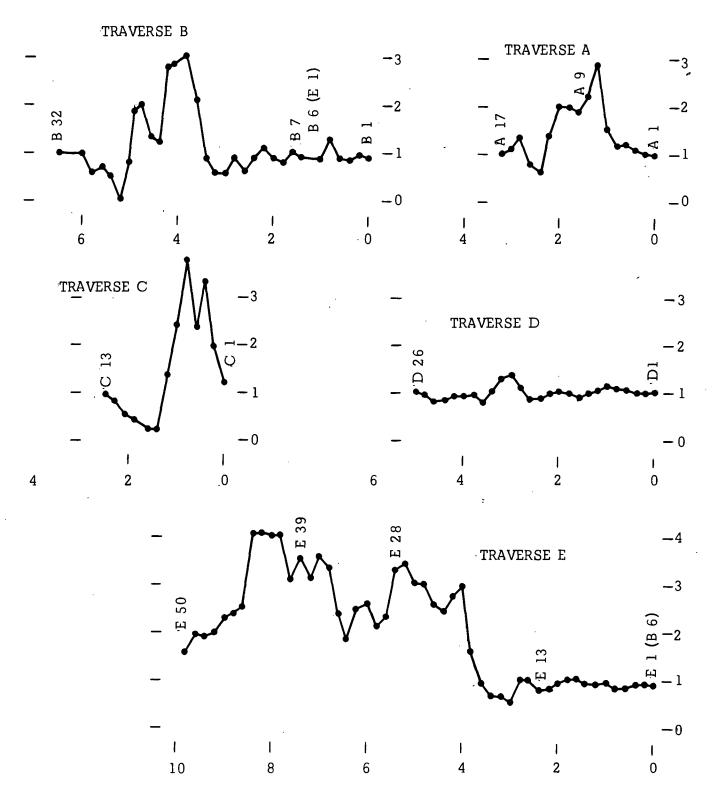








# E. DOVER(SOUTH) AREA

# TRAVERSES A, B, C, D, E

| STATION      | GAMMAS | STATION     | GAMMAS |
|--------------|--------|-------------|--------|
| <b>A-</b> 1  | 1130   | 3           | 1050   |
| 2            | 1370   | 4           | 1340   |
| 3            | 1370   | 5           | 1850   |
| 4            | 1540   | 6           | 3300   |
| 5            | 1250   | 7           | 10     |
| 6            | 510    | 8           | 1090   |
| 7            | 930    | 9           | 1130   |
| 8            | 900    | 10          | 1250   |
| 9            | 1180   | 11          | 1200   |
| 10           | 1360   | 12          | 1200   |
| 11           | 1200   | C-13        | 1230   |
| 12           | 1360   | F - 1       | 1510   |
| 13           | 2060   |             | 1890   |
| 14           | 1240   | 2<br>3      | 1550   |
| 15           | 900    | 4           | 1460   |
| 16           | 980    | 5           | 1390   |
| 17           | 1190   | 6           | 1350   |
| <b>A-</b> 18 | 1130   | 7           | 1280   |
| 19           | 970    | F- 8        | 1200   |
| 20           | 770    | D- 1        | 1140   |
| 2 1          | 1060   | 2           | 1105   |
| 22           | 1045   | 3           | 1240   |
| 23           | 1020   | 4           | 1200   |
| 24           | 1000   | 5           | 1100   |
| 25           | 940    | 6           | 1040   |
| 26           | 950    | 7           | 1130   |
| 27           | 900    | 8           | 1080   |
| 28           | 890    | <b>D-</b> 9 | 1190   |
| 29           | 935    | <b>E-</b> 1 | 1120   |
| 30           | 920    | 2           | 1220   |
| A-31         | 945    | 3           | 1280   |
| B- 1         | 1170   | 4           | 1080   |
| 2            | 1360   | 5           | 1010   |
| 3            | 1490   | 6           | 1040   |
| 4            | 1270   | 7           | 1010   |
| 5            | 12 10  | 8           | 1030   |
| 6            | 1060   | 9           | 1230   |
| 7            | 1280   | 10          | 1250   |
| 8            | 1100   | 11          | 1180   |
| 9            | 1230   | .12         | 1220   |
| B-10         | 1370   | 13          | 1060   |
| C- 1         | 1135   | 14          | 1060   |
| 2            | 1080   | 15          | 1160   |
|              | [ 27   | E-16        | 12 00  |



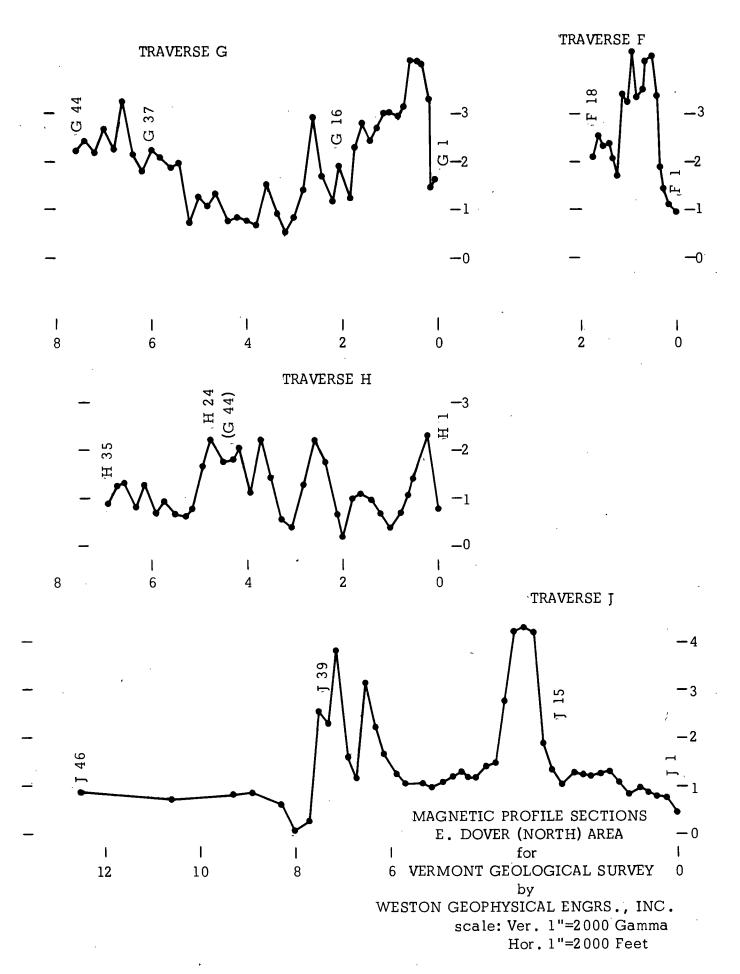


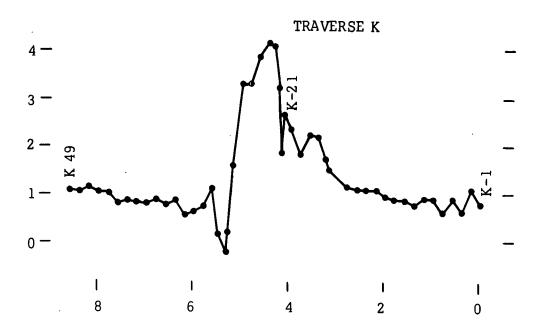


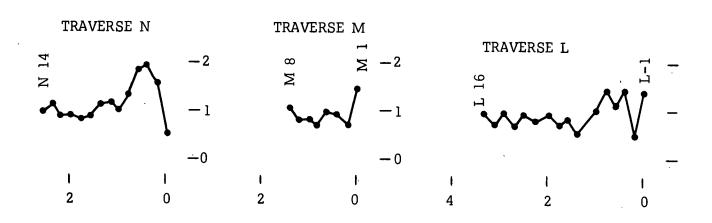
MAGNETIC PROFILE SECTIONS

E. DOVER (NORTH) AREA

for


VERMONT GEOLOGICAL SURVEY


by


WESTON GEOPHYSICAL ENGRS., INC.

scale: Ver. 1"=2000 Gamma

Hor. 1"=2000 Feet







MAGNETIC PROFILE SECTIONS

E.DOVER (NORTH) AREA

for

VERMONT GEOLOGICAL SURVEY

by

WESTON GEOPHYSICAL ENGRS., INC.

scale: Ver. 1 "=2000 Gamma

Hor. 1 "=2000 Feet

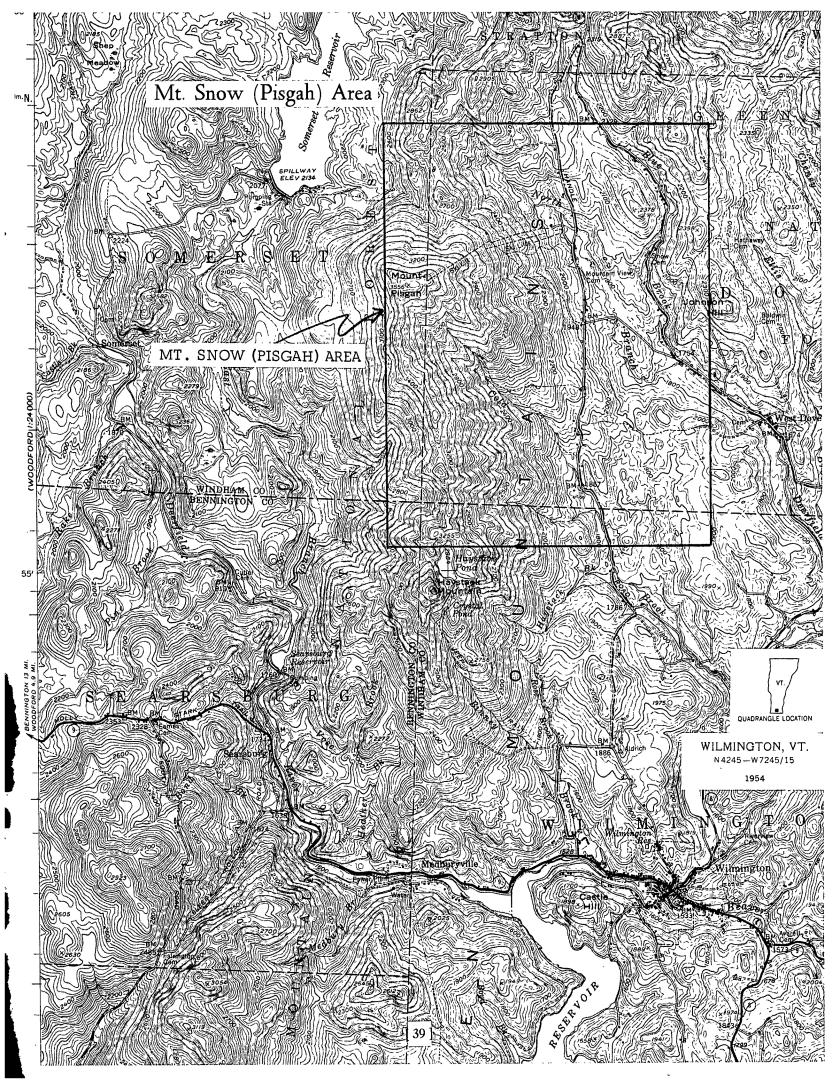
# TRAVERSES A, B, C

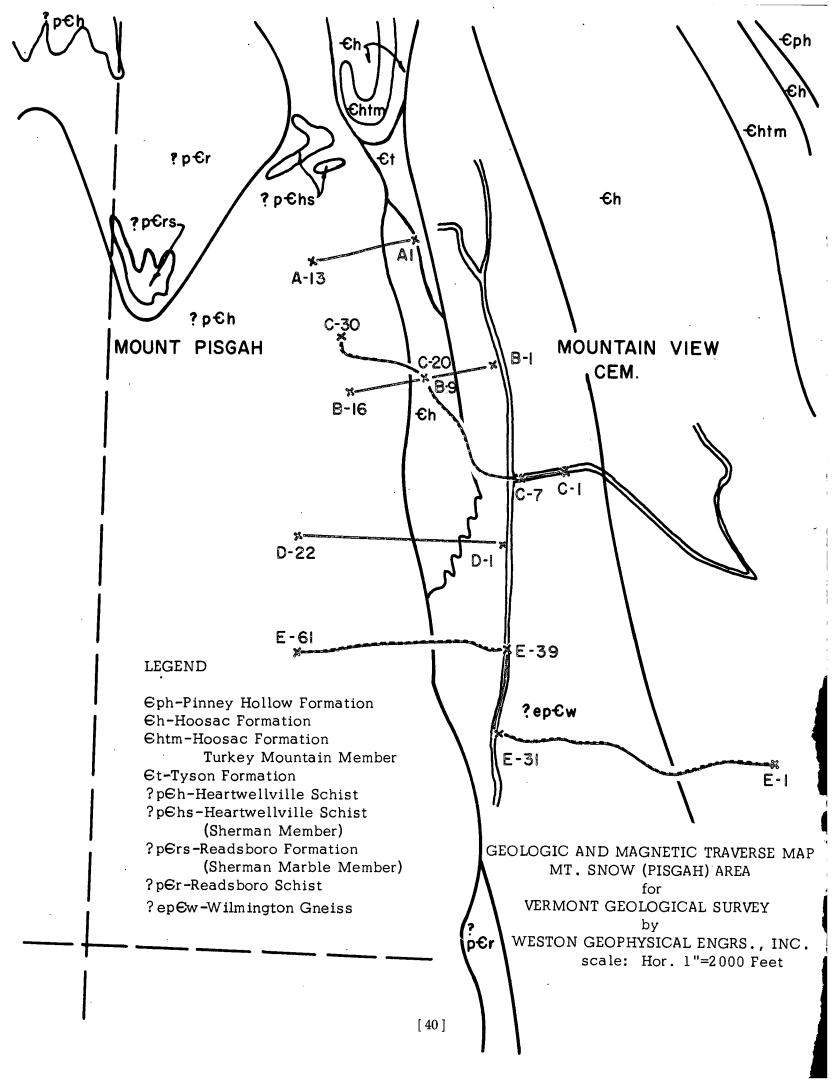
| STATION | GAMMAS        | STATION | GAMMAS |
|---------|---------------|---------|--------|
| A-1     | 1020          | 14      | 960    |
| 2       | 1070          | 15      | 610    |
| 3       | 1140          | 16      | 660    |
| 4       | 1270          | 17      | 990    |
| 5       | 1200          | 18      | 2170   |
| 6       | 1550          | 19 .    | 3100.  |
| 7       | 2920          | 20      | 2900   |
| 8       | 2290          | 21      | 2880   |
| A-9     | 1 <b>9</b> 40 | 22      | 1350   |
| 10      | 2070          | 23      | 1460   |
| 11      | 2010          | 24      | 2040   |
| 12      | 1410          | 25      | 1900   |
| 13      | 630           | 26      | 820    |
| 14      | 830           | 27      | 80     |
| 15      | 1380          | 28      | 550    |
| 16      | 1100          | 29      | 770    |
| A-17    | 1060          | 30      | 625    |
| lx      | 1870          | 31      | 1030   |
| 2x      | 2480          | B- 32   | 1040   |
| 3x      | 3180          | C- 1    | 1250   |
| B- 1    | 950           | 2       | 1990   |
| 2       | 1000          | 3       | 3370   |
| 3       | 900           | . 4     | 2350   |
| 4       | 940           | 5       | 3800   |
| 5       | 1370          | 6       | 2420   |
| 6       | 920           | 7       | 1320   |
| B- 7    | 950           | 8       | 240    |
| 8       | 1060          | 9       | 290    |
| 9       | 860           | 10      | 470    |
| 10      | 980           | 11      | 570    |
| 11      | 1170          | 12      | 850    |
| 12      | 960           | C-13    | 990    |
| 13      | 660           |         |        |
|         |               | t       |        |

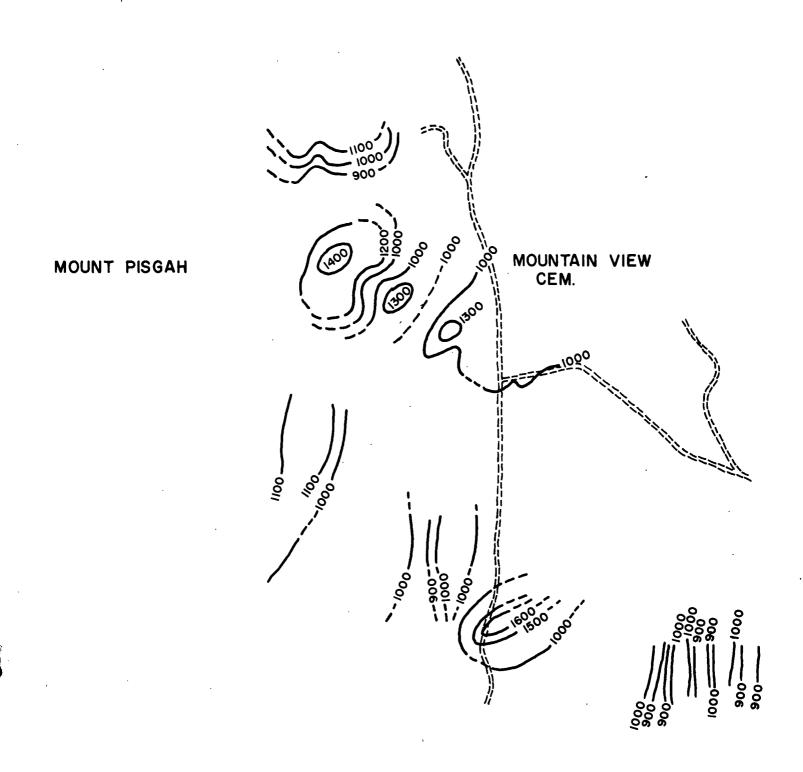
TRAVERSE D, E

| STATION | GAMMAS | STATION | GAMMAS |
|---------|--------|---------|--------|
| D-1     | 1045   | E-13    | 800    |
| 2       | 1060   | 14      | 1030   |
| 3       | 1070   | 15      | 1020   |
| 4       | 1100   | 16      | 510    |
| 5       | 1130   | 17      | 700    |
| 6       | 1200   | 18      | 710    |
| 7       | 1100   | 19      | 980    |
| 8       | 1025   | 20      | 1620   |
| 9       | 950    | 21      | 3000   |
| 10      | 1025   | 22      | 2800   |
| 11      | 1040   | 23      | 2420   |
| 12      | 1010   | . 24    | 2600   |
| 13      | 920    | 25      | 3050   |
| 14      | 920    | 26      | 3080   |
| 15      | 1240   | 27      | 3500   |
| 16      | 1430   | E-28    | 3370   |
| 17      | 1330   | 29      | 2370   |
| 18      | 1050   | 30      | 2170   |
| 19      | 810    | 31      | 2610   |
| 20      | 990    | 32      | 2500   |
| 2 1     | 935    | 33      | 1850   |
| 22      | 905    | 34      | 2360   |
| 23      | 885    | 35      | 3370   |
| 24      | 880    | 36      | 3640   |
| 25      | 990    | 37      | 3140   |
| D-26    | 1060   | 38      | 3579   |
| E- 1    | 920    | E-39    | 3110   |
| 2       | 930    | 40      | 4050   |
| 3       | 920    | 41      | 4050   |
| 4       | 880    | 42      | 4100   |
| 5       | 880    | 43      | 4100   |
| 5<br>6  | 990    | 44      | 2560   |
| 7       | 950    | 45      | 2470   |
| 8       | 950    | 46      | 2300   |
| 9       | 1060   | 47      | 2000   |
| 10      | 1020   | 48      | 1910   |
| 11      | 920    | 49      | 1950   |
| 12      | 870    | E-50    | 1600   |

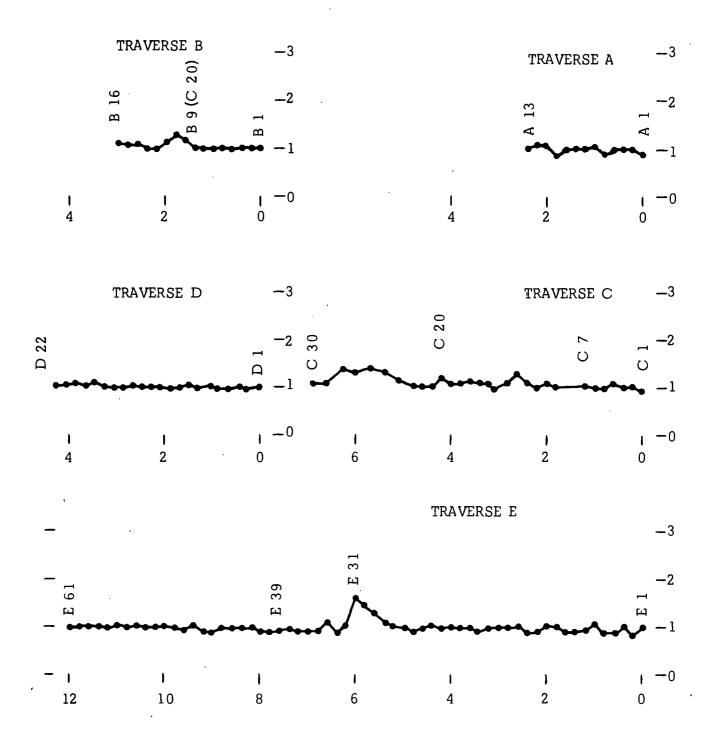
# TRAVERSES F & G


| STATION | GAMMAS | STATION | GAMMAS |
|---------|--------|---------|--------|
| F-1     | 980    | 14      | 2250   |
| 2       | 1100   | 15      | 1250   |
| 3       | 1410   | G-16    | 1940   |
| 4       | 1890   | 17      | 1180   |
| 5       | 3230   | 18      | 1680   |
| 6       | 4200   | 19      | 2910   |
| 7       | 4100   | 20      | 1370   |
| 8       | 3440   | 2 1     | 760    |
| 9       | 3230   | 22      | 450    |
| 10      | 4300   | 23      | 1000   |
| 11      | 3170   | 24      | 1590   |
| 12      | 3440   | 25      | 690    |
| 13      | 1640   | - 26    | 725    |
| 14      | 2180   | 27      | 820    |
| 15      | 2390   | 28      | 760    |
| 16      | 2330   | 29      | 1345   |
| 17      | 2570   | 30      | 1100   |
| F-18    | 2010   | 31      | 1300   |
| G-l     | 1675   | 32      | 700    |
| 2       | 1410   | 33      | 1980   |
| 3       | 3250   | 34      | 1820   |
| 4       | 4050   | 35      | 2050   |
| 5       | 4050   | 36 .    | 2280   |
| 6       | 4200   | G-37    | 1790   |
| 7       | 3030   | 38      | 2140   |
| 8       | 2920   | 39      | 3240   |
| 9       | 3030   | 40      | 2260   |
| 10      | 3040   | 41      | 2640   |
| 11      | 2770   | 42      | 2160   |
| 12      | 2460   | 43      | 2420   |
| 13      | 2820   | G-44    | 2200   |


#### TRAVERSE H. J


| STATION     | GAMMAS      | STATION             | GAMMAS      |
|-------------|-------------|---------------------|-------------|
| <b>H-</b> 1 | 750         | 8                   | 1300        |
| 2           | 2330        | 9                   | 1210        |
| 3           | 1350        | 10                  | 1200        |
| 4           | 1005        | 11                  | 1210        |
| 5           | 650         | 12                  | 1240        |
| 6           | 340         | 13                  | 1015        |
| 7           | 640         | 14                  | 1330        |
| 8           | 970         | <b>J-</b> 15        | 1865        |
| 9           | 1060        | 16 .                | 4200        |
| 10          | 960         | 17                  | 4300        |
| 11          | 0           | 18                  | 4200        |
| 12          | 580         | . 19                | 2770        |
| 13          | 1980        | 20                  | 1405        |
| 14          | 2240        | <b>-2</b> 1         | 1365        |
| 15          | 1220        | 22                  | 1150        |
| 16          | 360         | 23                  | 1200        |
| 17          | 520         | 24                  | 1280        |
| 18          | 1550        | 25                  | 1160        |
| 19          | 2250        | 26                  | 1080        |
| 20          | 1025        | 27                  | 990         |
| 21          | 2020        | 28                  | 1020        |
| 22          | 1800        | 29                  | 1000        |
| 23          | 1740        | 30                  | 1045        |
| H- 24<br>25 | . 2270      | 31                  | 1270        |
| 25<br>26    | 1690<br>770 | 32                  | 1680        |
| 27          |             | 33                  | 2210        |
| 28          | 600<br>670  | 34                  | 3130        |
| 29          | 970         | 35                  | 1010        |
| 30          | 640         | 36                  | 1565        |
| 31          | 1320        | 37                  | 3800        |
| 32          | 750         | <b>1 -</b> 39<br>38 | 2270        |
| 33          | 1310        | <b>1 -</b> 39<br>40 | 2590<br>200 |
| 34          | 12 10       | 41                  | 0           |
| H- 35       | 840         | 42                  | 640         |
| J- 1        | 460         | 43                  | 890         |
| 2           | 790         | 44                  | 840         |
| 3           | 750         | 45                  | 720         |
| 4           | 890         | J- 46               | 860         |
| 5           | 920         | , 10                | 000         |
| 6           | 800         | 31                  | 450         |
| 7           | 1020        | 32                  | 840         |
|             |             | 33                  | 860         |
|             |             |                     |             |

# TRAVERSE K, L, M, N


| STATION      | GAMMAS | STATION | GAMMAS |
|--------------|--------|---------|--------|
| K- 1         | 860    | 44      | 810    |
| 2            | 1140   | 45      | 1050   |
| 3            | 650    | 46      | 1040   |
| 4            | 950    | 47      | 1150   |
| 5            | . 680  | 48      | 1090   |
| 6 .          | 940    | 49      | 1090   |
| 7            | 970    | . L- 1  | 1450   |
| 8            | 820    | 2       | 500    |
| 9            | 910    | 3       | 1530   |
| 10           | 930    | 4       | 1150   |
| 11           | 1030   | 5       | 1520   |
| 12           | 1120   | 6       | 1070   |
| 13           | 1110   | 7       | 600    |
| 14           | 1110   | 8       | 850    |
| 15           | 1190   | 9       | 780    |
| 16           | 1330   | 10      | 980    |
| 17           | 1580   | 11      | 890    |
| 18           | 2220   | 12      | 960    |
| 19           | 2240   | 13      | 780    |
| 20           | 1840   | 14      | 1020   |
| <b>K-</b> 21 | 2400   | 15      | 790    |
| 22           | 2730   | L- 16   | 1000   |
| 23           | 1910   | M- 1    | 1550   |
| 24           | 3270   | 2       | 720    |
| 25           | 4100   | 3       | 960    |
| 26           | 4200   | 4       | 1025   |
| 27           | 3900   | 5       | 700    |
| 28           | 3320   | 6       | 860    |
| 29           | 3370   | 7       | 850    |
| 30           | 1610   | M- 8    | 1060   |
| 31           | 200    | N- 1    | 570    |
| 32           | 0      | 2       | 1590   |
| 33           | 170    | 3       | 1980   |
| 34           | 1140   | . 4     | 1870   |
| 35           | 780    | 5       | 1340   |
| 36           | 690    | 6       | 1000   |
| 37           | 590    | 7       | 1200   |
| 38           | 880    | . 8     | 1160   |
| 39           | 820    | . 9     | 890    |
| 40           | 890    | 10      | 810    |
| 41           | 820    | 11      | 905    |
| 42           | 840    | 12      | 950    |
| 43           | 850    | 13      | 1140   |
|              |        | N- 14   | 1000   |







MAGNETIC CONTOUR MAP
MT. SNOW (PISGAH) AREA
for
VERMONT GEOLOGICAL SURVEY
by
WESTON GEOPHYSICAL ENGRS., INC.
contour interval as indicated
scale: 1"=2000'



MAGNETIC PROFILE SECTIONS
MT. SNOW (PISGAH) AREA
for
VERMONT GEOLOGICAL SURVEY
by
WESTON GEOPHYSICAL ENGRS., INC.
scale: Ver. 1"=2000 Gamma
Hor. 1"=2000 Feet

## MT. SNOW (PISGAH) AREA

# TRAVERSES A, B & C

| STATION     | GAMMAS | STATION | GAMMAS |
|-------------|--------|---------|--------|
| <b>A-</b> 1 | 950    | C- 1    | 980    |
| 2           | 1060   | 2       | 1040   |
| 3           | 1040   | 3       | 1060   |
| 4           | 1010   | 4       | 1120   |
| 5           | 1000   | 5       | 1030   |
| 6           | 1070   | 6 .     | 1080   |
| 7           | 1070   | C-7     | 1100   |
| 8           | 1030   | 8       | 1080   |
| 9           | 1015   | 9       | 1100   |
| 10          | 970    | . 10    | 1070   |
| 11          | 1130   | 11      | 1150   |
| 12          | 1130   | 12      | 1350   |
| A-13        | 1080   | 13      | 1150   |
| B- 1        | 1050   | 14      | 1030   |
| 2           | 1040   | 15      | 1120   |
| 3 .         | 1060   | 16      | 1120   |
| 4           | 1060   | 17      | 1120   |
| 5           | 1050   | 18      | 1120   |
| 6           | 1070   | 19      | 1110   |
| 7           | 1085   | C-20    | 1220   |
| 8           | 1060   | 21      | 1070   |
| B- 9        | 1240   | 22      | 1080   |
| 10          | 1350   | 23      | 1070   |
| 11          | 1175   | 24      | 1200   |
| 12          | 1050   | 25      | 1380   |
| 13          | 1090   | 26      | 1460   |
| 14          | 1135   | 27      | 1360   |
| 15          | 1110   | 28      | 1410   |
| B-16        | 1140   | 29      | 1115   |
|             |        | C-30    | 1125   |

# MT. SNOW (PISGAH) AREA

## TRAVERSES D & E

| STATION | GAMMAS | STATION | GAMMAS |
|---------|--------|---------|--------|
| D-l     | 1020   | 18      | 990    |
| 2       | 1000   | 19      | 1050   |
| 3       | 1030   | 20      | 1035   |
| 4       | 1000   | 21      | 1030   |
| 5       | 1050   | 22      | 1000   |
| 6       | 1030   | 23      | 1080   |
| 7       | 1050   | 24      | 1020   |
| 8       | 1065   | 25      | 975    |
| . 9     | , 1055 | 26      | 1010   |
| 10      | 1050   | 27      | 1070   |
| 11      | 1060   | 28      | 1130   |
| 12      | 1070   | 29      | 1330   |
| 13      | 1075   | 30      | 1510   |
| 14      | 1070   | E-31    | 1610   |
| 15      | 1050   | 32      | 1025   |
| 16      | 1060   | 33      | 990    |
| 17      | 1080   | 34 •    | 1110   |
| 18      | 1110   | 35      | 970    |
| 19      | 1100   | 36      | 990    |
| 20      | 1110   | 37      | 990    |
| 2 1     | 1100   | 38      | 1000   |
| D- 22   | 1100   | E-39    | 980    |
| E- 1    | 1070   | 40      | 980    |
| 2       | 870    | 41      | 980    |
| 3       | 1080   | 42      | 1010   |
| 4 ′     | 925    | 43      | 1015   |
| 5       | 940    | 44      | 1000   |
| 6       | 1130   | 45      | 1010   |
| 7       | 950    | 46      | 910    |
| 8       | 970    | 47      | 950    |
| 9       | 970    | 48      | 1035   |
| 10      | 1050   | 49      | 1000   |
| 11      | 1070   | 50      | 1040   |
| 12      | 950    | 51      | 1050   |
| 13      | 940    | 52      | 1030   |
| 14      | 1040   | 53      | 1030   |
| 15      | 1020   | 54      | 1050   |
| 16      | 1035   | 55      | 1040   |
| 17      | 1030   | 56      | 1060   |
|         |        | 57      | 1010   |
|         |        | 58      | 1090   |
|         |        | 59      | 1070   |
| •       |        | 60      | 1060   |
|         |        | E-61    | 1050   |

# REPORT ON MAGNETIC SURVEY IN THE LUDLOW AREA WINDSOR COUNTY, VERMONT

By

#### VINCENT J. MURPHY

WESTON GEOPHYSICAL ENGINEERS, INC.

#### Introduction

During September, 1962, a magnetic survey was conducted in the vicinity of Dover, Vermont, for the Vermont Geological Survey. In that study magnetic traverses were made over a large ultramafic rock mass and adjacent rocks.

A similar but somewhat smaller area of ultramafic rock exists in the vicinity of Ludlow, Vermont. Dr. Charles G. Doll, Vermont State Geologist, in company with Mr. Vincent J. Murphy of Weston Geophysical Engineers, Inc., examined this area and found that a magnetic survey was practicable.

#### Method of Study

The magnetic method adopted for the Ludlow area is identical to the method used in the Dover area and described in that report.

In both of these studies, relative values of magnetic intensity were obtained, with the base magnetic level nearly the same in each. This closely corresponding magnetic level will facilitate comparison of data, as both sets of data can be used either independently or together. Virtually all of the statements in the Dover report are applicable to the Ludlow area. A few of the more pertinent ones are included as follows:

"... Highly anomalous readings are obtained wherever a concentration of magnetic minerals exists. If the magnetic anomalies extend over a wide area, or if they can be traced for great longitudinal distances, a

body of possible economic value is indicated.

"The magnetic minerals are often of too small a quantity to have economic value, but they are in many instances associated with other minerals that are of value. The magnetic minerals therefore serve as indicators, and are readily detectable."

#### Locations of Magnetic Stations

A few stations could be located along roads and other prominent features, but because of wooded terrain most stations had to be located by compass and pacing. Although not as accurately located as by transit and tape survey, the locations are considered to be adequate for the study.

Approximately 256 stations were occupied and were spaced 200 feet apart generally.

#### Results of the Survey

The area studied is located approximately in the center of the Ludlow, Vermont, quadrangle. This map-area was enlarged two and one half times and the magnetic traverses plotted upon it. The locations of two or more major stations for each traverse are indicated on the maps. The remaining stations for each traverse can be located readily by use of the traverse map and by scaling the spacing of points shown on the magnetic profile for each traverse.

Magnetic station values for each traverse are plotted on the graph sections accompanying the report. Tabulations of these values are also included in this report in the event that a specific need for them arises.

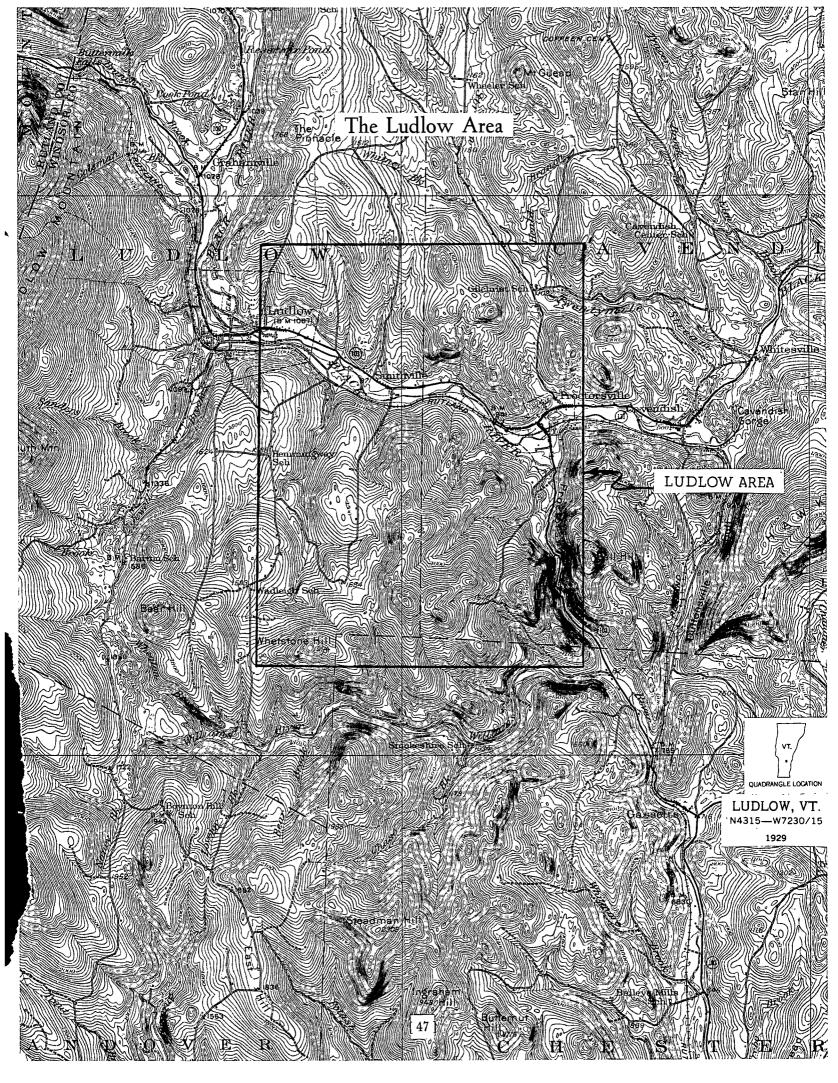
#### Presentation of Data

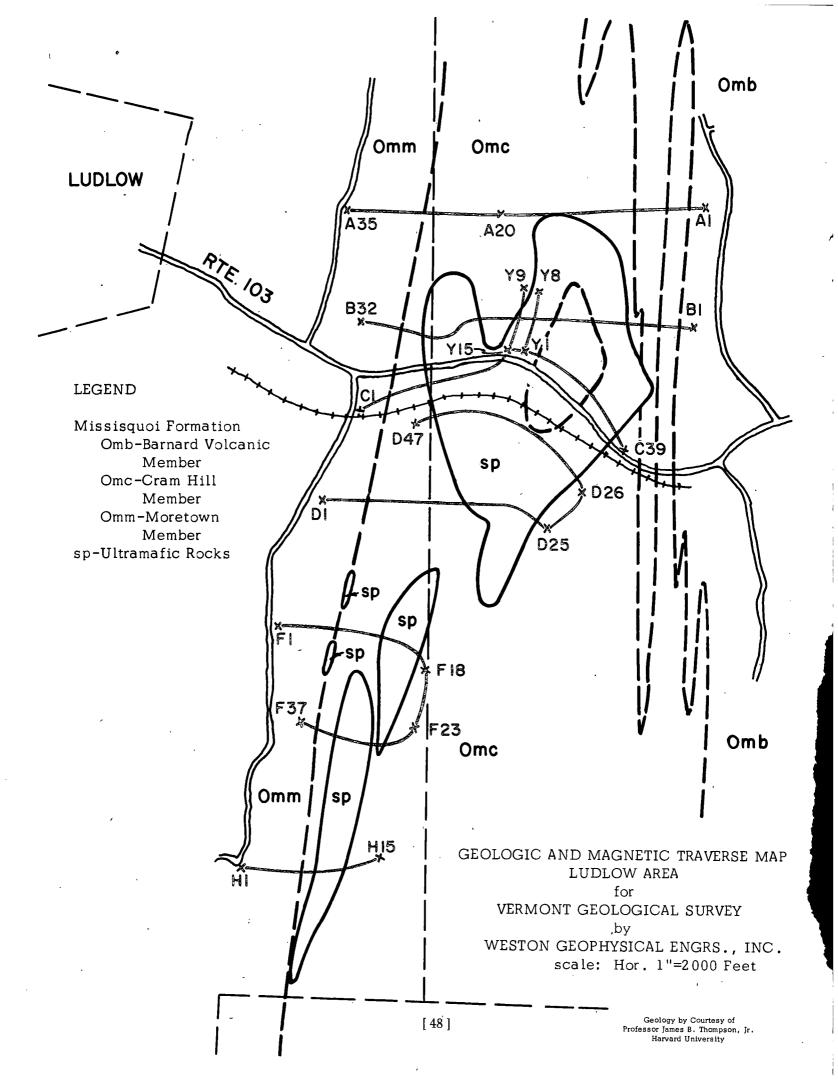
Magnetic profiles along the traverses and a magnetic contour map for the entire area are included with this report. In evaluating the data it should be realized that where the density of stations and traverses is greatest the more accurate is the magnetic contour map.

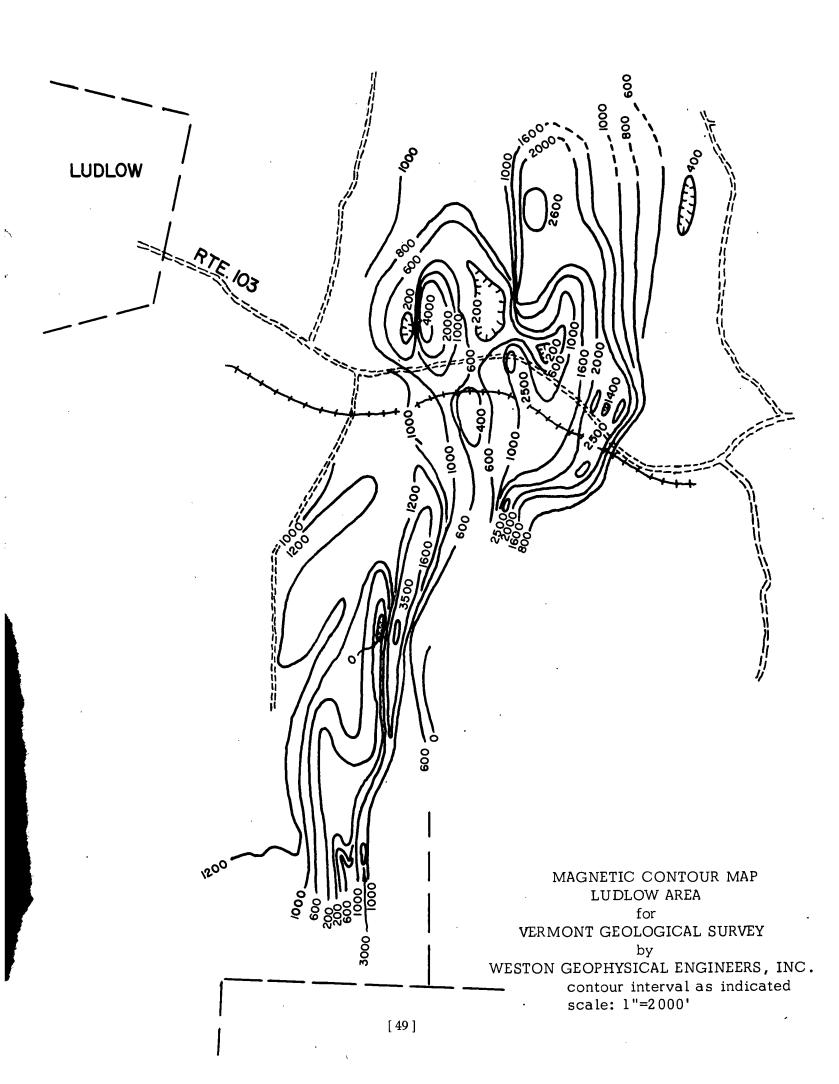
Because of the very erratic readings in a few locations, the contouring had to be generalized. Inspection of the profiles will indicate the areas where the magnetic intensity varies greatly and in short distances. These areas, of necessity, had to be generalized on the magnetic contour map.

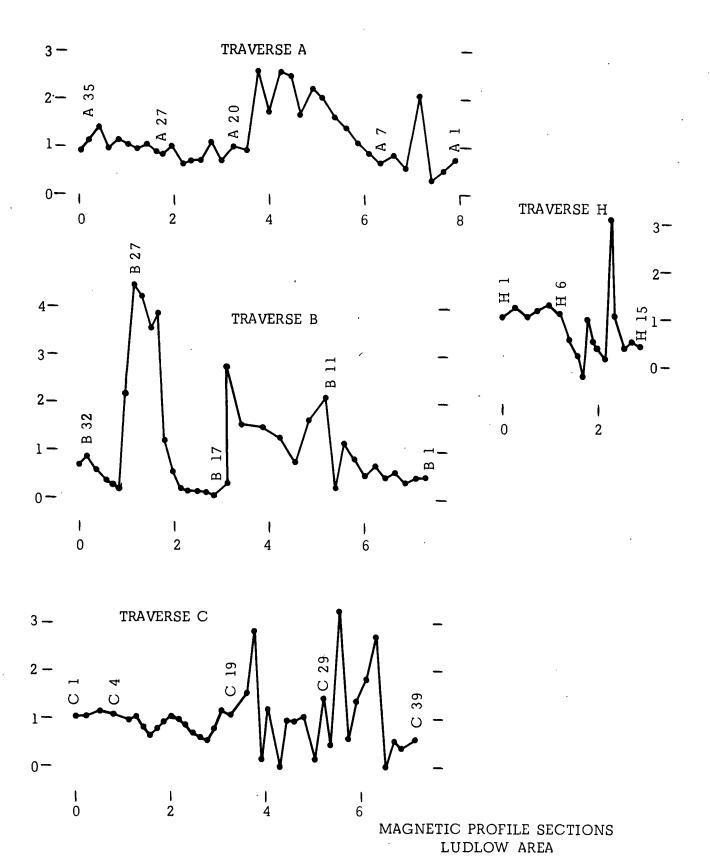
#### Correlations with Known Geology

The causes of magnetic anomalies are concentrations of magnetic minerals. These exist within the ultramafic rock mass and possibly within other related rocks. The geology of the Ludlow area is described in "A Gneiss

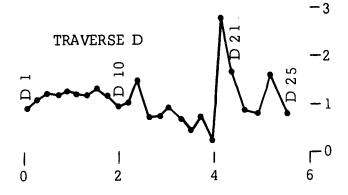

Dome in Southeastern Vermont" by James B. Thompson, Jr.: Ph.D. thesis, Massachusetts Institute of Technology, 1950.

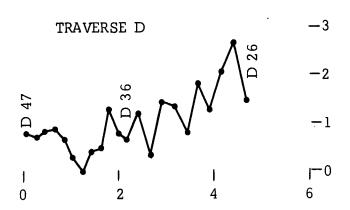

The pattern of the anomalies is similar to that detected in the Dover area. It exists in the Ludlow area in a more erratic manner, however, and could not be as well defined. Its existence is definite and further exploration by drilling would serve to determine the economic value of associated minerals.

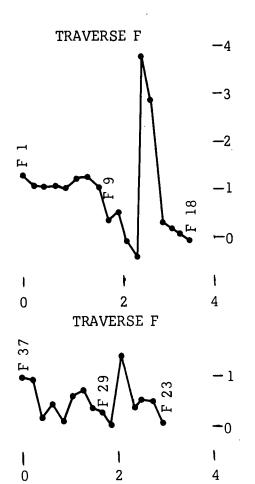

#### Economic Possibilities and Recommendations


The largest and best defined anomalies are, of course, the areas of greatest interest. Particularly strong anomalies are located 1,000 feet north of Highway #103, between stations B22 and B28, and about one mile south of Highway #103, between stations F12 and F15.

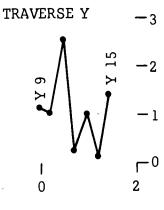
The pattern of test drilling should be perpendicular to the trend of an anomaly. This procedure will best determine the types of minerals causing the anomalies and should establish the economic value of associated minerals.

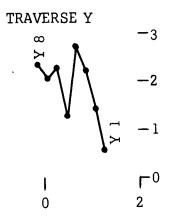


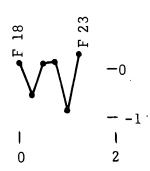







Refer to Data Tabulations for Station Sequence and Individual Station Values for
VERMONT GEOLOGICAL SURVEY
by
WESTON GEOPHYSICAL ENGINEERS, INC.
scale: Ver. 1"=2000 Gamma
Hor. 1"=2000 Feet






Refer to Data Tabulations for Station Sequence and Individual Station Values









MAGNETIC PROFILE SECTIONS
LUDLOW AREA
for
VERMONT GEOLOGICAL SURVEY
by
WESTON GEOPHYSICAL ENGRS., INC.
scale: Ver. 1"=2000 Gamma
Hor. 1"=2000 Feet

## LUDLOW AREA

## TRAVERSES A, B, C

| STATION | GAMMAS | STATION      | GAMMAS |
|---------|--------|--------------|--------|
| A - 1   | 785    | B <b>-</b> 6 | 722    |
| 2       | 582    | 7            | 492    |
| 3       | 339    | 8            | 881    |
| 4       | 2 12 8 | 9            | 1176   |
| 5       | 624    | 10           | 234    |
| . 6     | 884    | 11           | 2 167  |
| 7       | 708    | 12           | 1629   |
| 8       | 928    | 13           | 719    |
| 9       | 1133   | 14           | 1279   |
| 10      | 1438   | 15           | 1492   |
| 11      | 1680   | B - 16       | 1549   |
| 12      | 2081   | Y - 11       | 2615   |
| 13      | 2297   | Y - 12       | 350    |
| 14      | 1697   | B - 17       | 57     |
| 15      | 2530   | 18           | 136    |
| 16      | 2609   | 19           | 169    |
| 17      | 1778   | 20           | 168    |
| 18      | 2618   | 2 1          | 2 17   |
| 19      | 940    | 22           | 525    |
| 20      | 1040   | 23           | 12 12  |
| 21      | 752    | 24           | 3888   |
| 22      | 1129   | 25           | 3537   |
| 23      | 728    | 26           | 42 47  |
| 24      | 729    | 27           | 4497   |
| 25      | 695    | B-27+150     | 2056   |
| 26      | 1062   | 28           | 23     |
| 27      | 890    | 29           | 79     |
| 28      | 912    | 30           | 366    |
| 29      | 1065   | 31           | 578    |
| 30      | 975    | 32           | 896    |
| 31      | 1058   | 33           | 704    |
| 32      | 1160   | C - 1        | 1072   |
| 33      | 945    | 2            | 1070   |
| 34      | 1424   | 3            | 1150   |
| 35      | 1159   | 4            | 1046   |
| 36      | 967    | 5            | 979    |
| B - 1   | 480    | 6            | 1029   |
| 2       | 473    | 7            | 832    |
| 3       | 341    | 8            | 676    |
| 4       | 555    | 9            | 796    |
| 5       | 473    | 10           | 935    |
|         | -      | 11           | 1046   |

#### LUDLOW AREA

# TRAVERSES F, H, Y

| STATION     | GAMMAS           | STATION | GAMMAS |
|-------------|------------------|---------|--------|
| F - 8       | 1087             | 10      | , 479  |
| 9           | 361              | 11      | 166    |
| 10          | 537              | 11+100  | 3087   |
| 11          | <b>-</b> 52      | 12      | 1040   |
| 12          | -431             | 13      | 387    |
| 13          | 3820             | 14      | 534    |
| 14          | 2896             | 15      | 425    |
| 15          | 343              | Y - 1   | 666    |
| 16          | 214              | 2       | 1505   |
| 17          | 103              | . 3     | 2315   |
| 18 *        | <b>-6</b> 1      | . 4     | 2804   |
| 19          | <del>-</del> 711 | 5       | 1385   |
| 20          | <b>-41</b> .     | 6       | 2335   |
| 21          | <del>-</del> 8   | 7       | 2143   |
| 22          | -1066            | 8       | 2421   |
| 23          | 143              | 9       | 1282   |
| 24          | 604              | 10      | 1141   |
| 25          | 620              | 11      | 2615   |
| 26          | 443              | 12      | 350    |
| 27          | 1505             | 13      | 1174   |
| <b>2</b> ·8 | 63               | 14      | 230    |
| 29          | 352              | ` 15    | 1579   |
| 30          | 467              |         |        |
| 31          | 828              |         |        |
| 32          | 724              |         |        |
| 33          | 183              |         |        |
| 34          | 537              |         |        |
| 3.5         | 232              |         |        |
| 36          | 1020             |         | •      |
| 37          | 1043             |         |        |
| H - 1       | 1031             |         |        |
| . 2         | 1227             |         |        |
| 3           | 1027             |         |        |
| 4           | 1128             |         |        |
| 4<br>5      | 1257             |         |        |
| 6           | 1086             |         |        |
| 7           | 566              |         |        |
| . 8         | 2 19             |         |        |
| 8+100       | -224             |         |        |
| 9           | 966              |         |        |
| 9+100       | 528              |         |        |

## LUDLOW AREA

## TRAVERSES C. D. F

| STATION    | GAMMAS | STATION     | GAMMAS      |
|------------|--------|-------------|-------------|
| C-12       | 992    | 14          | 762         |
| 13         | 867    | 15          | 965         |
| 14         | 714    | 16          | 689         |
| 15         | 613    | 17          | 470         |
| 16         | 542    | 18          | 773         |
| 17         | 788    | 19          | 275         |
| 18         | 1143   | 20          | 2749        |
| 19         | 1047   | 21          | 1640        |
| 20         | 1514   | 22          | 842         |
| 2 1        | 2823   | 23          | 786         |
| 22         | 147    | 24          | 1605        |
| 23         | 1210   | 25          | 789         |
| 24         | -36    | . 26        | 1469        |
| <b>2</b> 5 | 947    | 27          | 2709        |
| 26         | 941    | <b>28</b> . | 2040        |
| 27         | 1008   | 29          | 1249        |
| 28         | 137    | 30          | 1827        |
| 29         | 1422   | 31          | 824         |
| 30         | 454    | 32          | 1378        |
| 31         | 3248   | 33          | 1433        |
| 32         | 549    | 34          | 343         |
| 33         | 1369   | 3.5         | 12 15       |
| 34         | 1818   | 36          | 675         |
| 35         | 2734   | 37          | 826         |
| 36         | -106   | 38          | 1337        |
| 37         | 557    | 39          | 485         |
| 38         | 399    | 40          | 419         |
| 39         | 586    | 41          | <b>-2</b> 1 |
| D - 1      | 935    | 42          | 285         |
| 2          | 1102   | 43          | 660         |
| 3          | 1197   | 44          | 898         |
| 4          | 1222   | 45          | 872         |
| 5          | 1271   | 46          | 727         |
| 6          | 1227   | 47          | 779         |
| 7          | 1191   | F - 1       | 1310        |
| 8          | 1363   | 2           | 1128        |
| 9          | 12 18  | 3           | 1116        |
| 10         | 995    | . 4         | 1111        |
| 11 .       | 1037   | 5           | 1088        |
| 12         | 1487   | 6           | 1263        |
| 13         | 756    | 7           | 1311        |

--·